Q:

Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = xyi + 5zj + 7yk, C is the curve of intersection of the plane x + z = 8 and the cylinder x2 + y2 = 81.

Accepted Solution

A:
By Stokes' theorem,[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S[/tex]where [tex]S[/tex] is the surface with [tex]C[/tex] as its boundary. The curl is[tex]\nabla\times\vec F(x,y,z)=2\,\vec\imath-x\,\vec k[/tex]Parameterize [tex]S[/tex] by[tex]\vec\sigma(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+(8-u\cos v)\,\vec k[/tex]with [tex]0\le u\le9[/tex] and [tex]0\le v\le2\pi[/tex]. Then take the normal vector to [tex]S[/tex] to be[tex]\vec\sigma_u\times\vec\sigma_v=u\,\vec\imath+u\,\vec k[/tex]Then the line integral is equal to the surface integral,[tex]\displaystyle\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^9(2\,\vec\imath-u\cos v\,\vec k)\cdot(u\,\vec\imath+u\,\vec k)\,\mathrm du\,\mathrm dv[/tex][tex]\displaystyle=\int_0^{2\pi}\int_0^9(2u-u^2\cos v)\,\mathrm du\,\mathrm dv=\boxed{162\pi}[/tex]